Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 18(1): 83, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951933

RESUMO

Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson's disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo
2.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168401

RESUMO

Background: Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. Methods: aSYN PPFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell- type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser- scanning microscopy of genetically encoded sensors for bioenergetic and redox status. Results: In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. Conclusions: Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.

3.
J Parkinsons Dis ; 12(6): 1921-1935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754288

RESUMO

BACKGROUND: Isolated rapid eye movement sleep behavior disorder (iRBD) is prodromal for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). OBJECTIVE: We investigated the use of cardiac [123I]meta-iodo-benzyl-guanidine scintigraphy ([123I]MIBG) and olfactory testing- in comparison to [123I]N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane single photon emission computed tomography ([123I]FP-CIT-SPECT)- for identifying iRBD patients as prodromal phenotype of PD/DLB. METHODS: 37 RBD subjects underwent cardiac [123I]MIBG and brain [123I]FP-CIT-SPECT at baseline. Olfactory (Sniffin' Sticks), cognitive and motor functions were tested annually for ∼4 years. RESULTS: 29/37 (78.4%) subjects had a pathological [123I]MIBG, of whom 86.2% (25/29) presented at least a moderate hyposmia at baseline (threshold/discrimination/identification-(TDI-)score ≤25). 20/37 (54.1%) subjects had a pathological [123I]FP-CIT-SPECT, always combined with a pathological [123I]MIBG. In subjects with pathological [123I]MIBG, olfactory function worsened (mainly due to threshold and discrimination subscores) from baseline to follow-up (p = 0.005). Olfaction was more impaired in subjects with pathological [123I]MIBG compared to those with normal [123I]MIBG at baseline (p = 0.001) and follow-up (p < 0.001). UPDRS-III scores increased in subjects with both pathological [123I]MIBG and [123I]FP-CIT-SPECT. In this group, seven subjects phenoconverted to PD, all- except for one- presented with at least moderate hyposmia at baseline. CONCLUSION: A combination of the biomarkers "pathological [123I]MIBG" and "hyposmia" likely identifies iRBD patients in an early prodromal stage of PD/DLB, i.e., before nigrostriatal degeneration is visualized. One-third of the subjects with pathological [123I]MIBG had a normal [123I]FP-CIT-SPECT. Noteworthy, in iRBD subjects with pathological [123I]MIBG, olfactory impairment is progressive independent of the [123I]FP-CIT-SPECT status.


Assuntos
Doença por Corpos de Lewy , Transtornos do Olfato , Doença de Parkinson , Transtorno do Comportamento do Sono REM , 3-Iodobenzilguanidina , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Simpatectomia , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos
4.
Neurobiol Dis ; 168: 105687, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283326

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and motor dysfunction has been attributed to loss of dopaminergic neurons. However, motor dysfunction is only one of many symptoms experienced by patients. A neuropathological hallmark of PD is intraneuronal protein aggregates called Lewy pathology (LP). Neuropathological staging studies have shown that dopaminergic neurons are only one of the many cell types prone to manifest LP. Progressive appearance of LP in multiple brain regions, as well as peripheral nerves, has led to the popular hypothesis that LP and misfolded forms of one of its major components - α-synuclein (aSYN) - can spread through synaptically connected circuits. However, not all brain regions or neurons within connected circuits develop LP, suggesting that cell autonomous factors modulate the development of pathology. Here, we review studies about how LP develops and progressively engages additional brain regions. We focus on how connectivity constrains progression and discuss cell autonomous factors that drive pathology development. We propose a mixed model of cell autonomous factors and trans-synaptic spread as mediators of pathology progression and put forward this model as a framework for future experiments exploring PD pathophysiology.


Assuntos
Doença de Parkinson , Sinucleinopatias , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fenótipo , alfa-Sinucleína/metabolismo
5.
Sci Rep ; 12(1): 3180, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210472

RESUMO

Parkinson's disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson's disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca2+-activated K+ (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction.


Assuntos
Norepinefrina/fisiologia , Doença de Parkinson/fisiopatologia , Parte Compacta da Substância Negra/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Locus Cerúleo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Sintomas Prodrômicos , Rotenona
6.
Mov Disord ; 37(3): 624-629, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796976

RESUMO

BACKGROUND: Isolated rapid eye movement sleep behavior disorder (iRBD) is prodromal for α-synucleinopathies. OBJECTIVE: The aim of this study was to determine whether pathological cardiac [123 I]meta-iodobenzylguanidine scintigraphy ([123 I]MIBG) is associated with progression of [18 F]fluorodeoxyglucose-positron emission tomography-based Parkinson's disease (PD)-related brain pattern (PDRP) expression in iRBD. METHODS: Seventeen subjects with iRBD underwent [18 F]fluorodeoxyglucose-positron emission tomography brain imaging twice ~3.6 years apart. In addition, [123 I]MIBG and [123 I]N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) at baseline were performed. Olfactory, cognitive, and motor functions were tested annually. RESULTS: Twelve of 17 subjects had pathological [123 I]MIBG. At baseline, 6 of 12 of these expressed the PDRP (suprathreshold PDRP z score). At follow-up, 12 of 17 subjects had suprathreshold PDRP z scores, associated with pathological [123 I]MIBG in 92% and with pathological [123 I]FP-CIT-SPECT in 75%. Subjects with pathological [123 I]MIBG had higher PDRP z score change per year (P = 0.027). Three subjects phenoconverted to PD; all had pathological [123 I]MIBG and [123 I]FP-CIT-SPECT, suprathreshold baseline PDRP z scores, and hyposmia. CONCLUSIONS: Pathological [123 I]MIBG was associated with progressive and suprathreshold PDRP z scores at follow-up. Abnormal [123 I]MIBG likely identifies iRBD as prodromal PD earlier than pathological [123 I]FP-CIT-SPECT. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , 3-Iodobenzilguanidina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Transtorno do Comportamento do Sono REM/complicações , Tomografia Computadorizada de Emissão de Fóton Único/métodos
7.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177086

RESUMO

In Parkinson's disease (PD), fibrillar forms of α-synuclein are hypothesized to propagate through synaptically coupled networks, causing Lewy pathology (LP) and neurodegeneration. To more rigorously characterize the determinants of spreading, preformed α-synuclein fibrils were injected into the mouse pedunculopontine nucleus (PPN), a brain region that manifests LP in PD patients and the distribution of developing α-synuclein pathology compared to that ascertained by anterograde and retrograde connectomic mapping. Within the PPN, α-synuclein pathology was cell-specific, being robust in PD-vulnerable cholinergic neurons but not in neighboring noncholinergic neurons. While nearly all neurons projecting to PPN cholinergics manifested α-synuclein pathology, the kinetics, magnitude, and persistence of the propagated pathology were unrelated to the strength of those connections. Thus, neuronal phenotype governs the somatodendritic uptake of pathological α-synuclein, and while the afferent connectome restricts the subsequent spreading of pathology, its magnitude and persistence is not a strict function of the strength of coupling.


Assuntos
Conectoma , Doença de Parkinson , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/genética
9.
J Neural Transm (Vienna) ; 126(4): 377-396, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643975

RESUMO

Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.


Assuntos
Encéfalo/fisiopatologia , Neurônios Dopaminérgicos , Doença de Parkinson/fisiopatologia , Animais , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Humanos
10.
J Bioenerg Biomembr ; 50(5): 355-365, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30116920

RESUMO

Succinate-driven reverse electron transport (RET) is one of the main sources of mitochondrial reactive oxygen species (mtROS) in ischemia-reperfusion injury. RET is dependent on mitochondrial membrane potential (Δψm) and transmembrane pH difference (ΔpH), components of the proton motive force (pmf); a decrease in Δψm and/or ΔpH inhibits RET. In this study we aimed to determine which component of the pmf displays the more dominant effect on RET-provoked ROS generation in isolated guinea pig brain and heart mitochondria respiring on succinate or α-glycerophosphate (α-GP). Δψm was detected via safranin fluorescence and a TPP+ electrode, the rate of H2O2 formation was measured by Amplex UltraRed, the intramitochondrial pH (pHin) was assessed via BCECF fluorescence. Ionophores were used to dissect the effects of the two components of pmf. The K+/H+ exchanger, nigericin lowered pHin and ΔpH, followed by a compensatory increase in Δψm that led to an augmented H2O2 production. Valinomycin, a K+ ionophore, at low [K+] increased ΔpH and pHin, decreased Δψm, which resulted in a decline in H2O2 formation. It was concluded that Δψm is dominant over ∆pH in modulating the succinate- and α-GP-evoked RET. The elevation of extramitochondrial pH was accompanied by an enhanced H2O2 release and a decreased ∆pH. This phenomenon reveals that from the pH component not ∆pH, but rather absolute value of pH has higher impact on the rate of mtROS formation. Minor decrease of Δψm might be applied as a therapeutic strategy to attenuate RET-driven ROS generation in ischemia-reperfusion injury.


Assuntos
Encéfalo/imunologia , Transporte de Elétrons/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/imunologia , Animais , Cobaias , Humanos , Potencial da Membrana Mitocondrial
11.
Acta Neuropathol Commun ; 6(1): 39, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747690

RESUMO

Degeneration of noradrenergic locus coeruleus neurons occurs during the prodromal phase of Parkinson's disease and contributes to a variety of non-motor symptoms, e.g. depression, anxiety and REM sleep behavior disorder. This study was designed to establish the first locus coeruleus α-synucleinopathy mouse model, which should provide sufficient information about the time-course of noradrenergic neurodegeneration, replicate cardinal histopathological features of the human Parkinson's disease neuropathology and finally lead to robust histological markers, which are sufficient to assess the pathological changes in a quantitative and qualitative way. We show that targeted viral vector-mediated overexpression of human mutant A53T-α-synuclein in vivo in locus coeruleus neurons of wild-type mice resulted in progressive noradrenergic neurodegeneration over a time frame of 9 weeks. Observed neuronal cell loss was accompanied by progressive α-synuclein phosphorylation, formation of proteinase K-resistant α-synuclein-aggregates, accumulation of Ubi-1- and p62-positive inclusions in microglia and induction of progressive micro- and astrogliosis. Apart from this local pathology, abundant α-synuclein-positive axons were found in locus coeruleus output regions, indicating rapid anterograde axonal transport of A53T-α-synuclein. Taken together, we present the first model of α-synucleinopathy in the murine locus coeruleus, replicating essential morphological features of human Parkinson's disease pathology. This new model may contribute to the research on prodromal Parkinson's disease, in respect to pathophysiology and the development of disease-modifying therapy.


Assuntos
Locus Cerúleo/citologia , Mutação/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Alanina/genética , Animais , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Endopeptidase K/farmacologia , Humanos , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/genética , Agregados Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Treonina/genética , Fatores de Tempo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...